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Abstract 
___________________________________________ 
 

- iv – 
________________________________________________________________________ 

Femoral head separation from the acetabular shell has been recorded, but clinical 

significance of this phenomenon has not yet been established. The objective of the study 

was to determine if there is a correlation between femoral head separation (sliding of the 

femoral head away from the acetabular cup), hip joint forces, and acetabular liner wear. 

Twenty subjects were strategically selected to participate in this study.  All subjects were 

asked to perform gait on a treadmill while under fluoroscopic surveillance. The number 

of incidences involving femoral head separation was tallied and acetabular bearing 

surface forces were determined for each subject.  A statistical correlation was done to 

determine if femoral head sliding is related to the kinetics of the hip joint.  Forty percent 

of the subjects were determined to have greater than 0.25 mm of wear.  Twelve subjects 

demonstrated femoral head sliding leading to separation.  Ten percent of the subjects 

tested demonstrated both wear and separation.  The forces determined at the hip joint 

ranged from 1.75 to 1.85 times body weight.   Although it was expected that subjects 

having more wear would have greater magnitudes of femoral head separation, the 

opposite was true.  Kinematic data resulted in increased force magnitudes for a subject 

with separation then a subject with separation.   
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1.1 Introduction and General Information 

Total hip arthroplasty (THA) is a common procedure involving replacement of 

the proximal femur and the acetabulum of the pelvis.  Total hip replacements are most 

frequently performed in cases of extreme osteoarthritis where depletion of the 

intercellular component of the cartilage within the hip joint causes erosion and cracking 

of the originally smooth, cushioned surface (Figure 1) (Norkin 1983).  This condition 

causes the subject to experience debilitating pain during ambulation.  Vascular necrosis 

of the femoral head and hip displaysia are also common reasons for THA surgery.  THA 

implants manufactured today have a lifetime of approximately ten years depending on 

subject activity and overall well being.  Revision surgeries are performed most frequently 

in the case of osteolysis.  Osteolysis is the deformation of the bone due to wear debris 

from the polyethylene liner.  The case of wear in polyethylene will be discussed further in 

the sections to follow. The number of THA surgeries in the US per year is approximately 

170,000 and the number of revisions is 37,000 per year (AAOS 2003). 

THA implants involve two components: a metal stem (with a modular metal or 

ceramic head) to replace the femur, and a metal shell with a metal, ceramic, or  
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Figure 1:  Hip with Osteoarthritis 
 

*www.orthogastonia.com/subject_ed/html_pages/hip/hip_osteoarthritis.htm 

 

polyethylene liner to replace the acetabulum of the pelvis.  During THA surgery the 

proximal femur is completely removed at the base of the femoral neck.  The 

intramedullary canal of the femur is reamed for placement of a cobalt chromium or 

titanium stem.  This stem provides stability throughout the continuation of the femur as 

well as a new femoral neck.  Attached to the implanted femoral neck is a modular ball 

that is used as a replacement for the femoral head.  The opposing side of the joint is 

prepared by reaming the acetabulum for fit of a metal shell into the acetabulum of the 

pelvis.  The metal shell encases a liner formed to accept the new femoral head 

replacement (Figure 2).  Total hip arthroplasty allows the subject to continue normal 

daily living by providing a newly resurfaced hip joint at the point where defects and/or 

disease have afflicted the joint bearing surface.   
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Figure 2:  Total Hip Replacement* 
 

*www.orthogastonia.com/subject_ed/html_pages/hip/hip_osteoarthritis.htm 

 

1.2 Kinematic Predictions 

THA surgical procedures are performed to return the subject to normal living 

standards and to provide pain relief.  Research has been done on how THA affects the 

kinematics and kinetics of the hip joint in subjects during normal daily activities.  One of 

the most widely studied activities is gait.  Gait kinematics and kinetics have been studied 

using gait labs in vivo, bio-imaging techniques: Roentgen Stereophotogrammetric 

Analysis (RSA) and more recently, fluoroscopy.   

Gait labs involve the use of multiple video cameras and light reflecting markers, 

placed on the subject’s skin, to track the movement of the subject using a biomechanics  
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Figure 3:  Gait Lab Markers on a Human Subject 
 

modeling software (Figure 3).  The flaw with gait lab studies is that the markers are 

placed on the skin of the subject and not the actual bone or implant.  Therefore, as the 

subject walks, the skin stretches and the markers actually track the skin and muscle 

movements instead of the bone or implants.  Previous analyses have determined 

significant inaccuracies with this methodology attempting to determine in vivo bone 

motion (Fuller 1997, Sati 1996, Cappozzo 1991, Cheze 2000). 

In vivo kinematic measurements have thus far come from two techniques: RSA 

and fluoroscopy.  Roentgen Stereophotogrammetric Analysis (RSA) was originally 

developed by Selvik in 1974 to study micro-motion of the THA implant post-operatively.  

RSA originally required the placement of tantalum beads in the THA implant and used a 



www.manaraa.com

Background 
 

 
- 5 - 

computer algorithm tracking system to determine bead placement in pre-operative and 

post-operative images (Glyn-Jones 2004, Kaptein 2004, Selvik 1989).  One of the most 

sought after advances in RSA has been to deride the method of the tantalum beads and 

use 3-D CAD models of the THA implants with the x-ray images to analyze movement 

(Kaptein 2004,Cianci 1995).  Both approaches to the RSA method have reported high 

rates of accuracy; however, these methods deal with static images and therefore can not 

capture the true kinematics of the subject due to the lack of fluid motion between each 

radiograph (Ostgaard 1997, Kaptien 2004, Cinaci 1995, Sovai 1999, de Lange 1990).    

The second and most recent method, fluoroscopy, allows recording of the true in 

vivo joint motion.  Current fluoroscopy joint studies include, but are not entirely limited 

to, the work of researchers in our laboratory (Komistek et al, Outten 2005).  Studies of 

the hip joint have been performed by our group for the activities of gait, 

abduction/adduction, and chair rise.  During these studies many interesting conclusions 

were made.  Through our previous studies of in vivo THA kinematics using fluoroscopy, 

the phenomena of hip separation was observed.   

1.3 Separation Phenomena 

Hip separation or femoral head sliding with the acetabular shell is the occurrence 

of the femoral head component sliding away from the center of the acetabular shell 

component in the superolateral direction.  The design objective for THA is that the 

adjoining circular surfaces remain in contact and that concentric motion is evident 

throughout all weight-bearing activities at the hip joint.  In the case of femoral head 
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separation, a small space is created between the two surfaces allowing the implant to 

slide out of its concentric boundary.  Previous studies measured a leg drop motion; during 

this activity the subject stands on a platform and simply lets one leg dangle.  This 

activity, one of the first tested for hip fluoroscopy, clearly detected hip separation (Figure 

4).  

To study the separation phenomena our lab, currently known as the Center for 

Musculoskeletal Research (CMR), has evaluated and compared the in vivo hip 

kinematics for constrained versus unconstrained THA and variable femoral head 

materials versus variable acetabular component materials during both 

abduction/adduction and gait activities (Komistek et. al).  The material comparative 

studies have revealed that the combination of a metal femoral head component within a 

polyethylene liner experience the greatest amount of incidence and magnitude of femoral 

head separation.  Komistek et al. reported that femoral head separation in MOP THA may 

occur because of the lack of fluid-film cohesion between the roughened polyethylene 

liner surface with the smooth metal femoral head surface.  This rough surface area can 

create interferences with the adhesion of the fluid between the polyethylene liner and 

metal head due to interrupted contact surface area.  In MOM or COC implants, the fluid-

film cohesion between the smooth surfaces carries the contact of the femoral head to the 

acetabular shell from weight bearing stance phases of gait throughout the swing phase  
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Figure 4:  (Top) Fully Seated Hip at Weight Bearing, (Bottom) Separated Hip at 
Non-Weight Bearing Dangle 
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(Komistek et al, Jahli-Valdid  2004, Nevelos 2000, Tipper 2002, Stewart 2003, Maso 

2004).  The conclusion of our group’s studies has lead to the finding that hip separation 

most often occurs in the unconstrained MOP THA.  Although many studies have 

documented that the phenomena of separation does occur, a further understanding of the 

effects of hip separation and the causes of its occurrence has not been studied or 

determined.  

1.4 Kinetic Predictions 

Due to the occurrence of THA implanted hip separation, one main question that 

needs evaluating is “Could femoral head separation induce impulse loading at the bearing 

surface caused by the impact of the femoral head into the acetabular shell under weight-

bearing conditions?”  There are two methods that can be used to determine in vivo force: 

(1) Telemetry, which is experimentally based and (2) mathematical modeling, which is 

theoretically based.  Most previous telemetric studies involved embedded strain sensors 

that are placed in the implant itself to measure the bearing surface forces acting through 

the implant during activities.  The signals are transmitted to a workstation telemetrically 

through a wireless device, which is also embedded inside the implant.  Instrumented 

force measurements of the in vivo THA were first measured in 1966 by Rydell.  Since 

then, many researchers have used telemetry in their work (Taylor 1997, Bergmann 1993, 

1997, Davy 1988, English 1978).  Some of the most recent work has been done by 

Bergmann using a COP telemetric hip to compare weight bearing surface hip forces 

during nine different activities: slow walking, normal walking, fast walking, walking 
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upstairs, walking downstairs, standing, sitting, switching weight from one to two legs, 

and bending the knee.  Forces during normal walking were recorded in Bergmann’s study 

in the range of 2.8 to 3.2 times body weight (Bergmann 2001).  One of the most 

prevailing concerns with telemetry is that, over time, surface wear occurs, which often 

leads to the sensors becoming damaged.  Long term telemetric studies of the hip joint can 

not be performed with today’s telemetric set up.  The equipment for telemetric studies is 

also very costly and therefore can only be used in a limited number of subjects.  

The other kinetic solution is theoretical math modeling.  Theoretical math 

modeling has been done extensively by many different methods.  Most theoretical math 

modeling of kinematics is done using either inverse dynamics or forward dynamics.  The 

method of inverse dynamics involves the input of kinematics to output forces and torques 

(math works 2005). Inverse dynamic modeling of the THA implanted hip joint has been 

done using the kinematic data collected from gait labs and fluoroscopy.   Hip joint forces 

during gait kinematics gathered from lab data have been found to have a very high value 

and extensive range of 4-12 times body weight (Stansfield 2002, Stansfield 1998).  Gait 

forces found using data from in vivo fluoroscopy have been found to be approximately 

1.9-2.6 times body weight which is much closer to the reported telemetric data than the 

gait lab analysis (Komistek 1998).  Forward dynamics is done using a prediction of the 

forces and torques to output the motions.  The biggest problem with using forward 

dynamics however is that the models tend to be very complicated and very time 
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consuming to develop due to the collection of force profiles for the variables used in the 

study (Hof 2004).   

1.5 Wear Predictions 

A second question of concern pertaining to the occurrence of hip separation in a 

THA is whether these “non-normal” kinematic patterns may influence polyethylene wear 

due to decrease in contact area during femoral head separation from the acetabular shell.  

The wear of the polyethylene liner itself can be caused by many different effects 

including but not limited to improper cross-linking techniques of the polymer, 

sterilization techniques, abnormal kinematics, or simply by normal wear and tear of the 

THA implant over many years (Claus 2003, Goldsmith 2001, Masaoka 2003, McKellop 

1995, Devane 1997, Komistek 1998, McKellop 1985, Northcut 1999, Ramamurti 1996).  

During THA many of the stabilizing muscles and ligaments are removed from the hip 

joint including the fibourous capsule, acetabular labrum, and the ligament at the head of 

the femur, the iliofemoral, ischiofemoral, pubofemoral, and transverse acetabular 

ligaments (Clarke 2003, Crowninsheield 1978).  Absence of these ligament-force 

interactions may also play a role in abnormal femoral head/acetabular shell movement 

and polyethylene wear.  

Tracking of femoral head movement on the acetabular shell to predict wear 

patterns has been done with hip joint simulators (Clarke 1997, Ramamurti 1996, Saikko 

1993, Clarke 1997, McKellp 1984).  Hip simulations have been conducted using 

experimental wear simulators for COC THA under femoral head separation conditions, 
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revealing for the first time similar wear patterns and modes of wear when comparing 

retrieval specimens with simulation specimens (Masao 2004, Tipper 2002).  Only one 

study has simulated MOP THA and found that implant wear and separation are 

negatively correlated (Clarke 2005).   

The current acetabular liners manufactured are composed of ultra high molecular 

weight polyethylene (UHMWPE), which is a highly crosslinked polyethylene material 

processed by radiation.  During the processing, radiation is used to reduce the numbers of 

free radicals in the material that may cause oxidation.  By eliminating the free radicals, 

the chains of the polyethylene tend to crosslink properly.  Although this new crosslinked 

polyethylene is much more wear resistant, wear does remain a concern and long-term 

follow-up has not been established for this material.  One major concern for wear is that 

the debris particles caused by wear of the polyethylene liner can cause osteolysis. 

Osteolysis causes bone softening and degradation, eventually requiring revision surgery 

to pack deformations in the bone and replace the implant.  During osteolysis the 

macrophages of the body engulf the polyethylene debris particles.  Unable to process the 

foreign material, the macrophages release a toxic substance that in turn degrades the 

bone.  Wear can occur between the implant and bone interfaces as well as between the 

implant components themselves.  The current study focuses on the wear between the 

femoral head and the acetabular liner.  

The purpose of the current project is to determine if the abnormal impulse loading 

of the THA implant caused by hip separation is evident in subjects having a MOP THA 
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with and without wear of the polyethylene. Our hypothesis is that during gait and other 

weight-bearing activities, femoral head separation may induce greater shear stresses at 

the bearing surface of the THA, possibly leading to increased polyethylene wear.  Due to 

the influence of hip separation it is also assumed that subjects having a higher incidence 

and magnitude of femoral head separation may have greater wear of their polyethylene 

insert.  It was also assumed that subjects with femoral head separation may also have 

increased bearing surface forces at the THA interface.  Therefore it is thought and 

hypothesized that abnormal  hip kinematics (differing from the normal hip) may cause 

impulse loading conditions to be prevalent and that the cyclic impulse motions of the 

femoral head sliding on the superolateral aspect of the acetabular shell induce shear 

stresses between the two components and subsequently cause more wear to occur. 
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2.1 Subject Selection   

A total of twenty volunteer subjects were enrolled in the study.  The request for 

subject participation was accepted through the IRB # 897-A and all subjects were 

informed of the procedures.  Each person was then asked to sign a statement of 

participation as well as a Health Insurance Portability and Accountability Act (HIPPA) 

privacy form.  In addition, subjects were asked to fill out a survey describing their own 

opinions on their post-operative experience and overall satisfaction with their current 

quality of life (Appendix).   

All subjects had a total hip arthroplasty and were subjects from a single surgeon 

(Dr. Douglas A. Dennis, Colorado Joint Replacement, Denver, Colorado).  A single 

surgeon was used as a control for surgical technique and THA implant functionality in 

the study, which we hoped would help control the number of variables.  Traditionally, 

there are two basic types of hip arthroplasty surgical techniques; (1) the posterolateral 

approach, and (2) the anterolateral approach.  It has been suggested that the posterolateral 

approach has a higher correlation with dislocation problems than the anterolateral 
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approach, due to the cut of the posterior capsule and short external rotators that stabilizes 

the joint (Madsen 2004, Schinsky 2003, Weeden 2003).  No specific studies have been 

done to determine the effects of differing surgical approaches on separation; therefore to 

reduce surgical variance, subject selection was limited to the one surgeon using the same 

surgical approach on each subject.  Therefore, all subjects in this study were implanted 

using posterolateral approach.   

The subjects selected in this study all have similar MOP THA implants 

manufactured by the same company (DePuy, A company of Johnson and Johnson 

Company).  All subjects were at least three years post-operative.  Stems used for this 

study included a variation of sizes from DePuy’s Ultima series, Unirom series, Stability 

series, S-rom series, and PFC series.  Stem geometry can play a role in implant wear; 

however in this study geometry was not included for the simple reasoning of limited 

subject resources and research time.  Femoral head sizes were mainly 28 mm in diameter 

with the exception of one subject having a 26 mm femoral head.  The offsets of the 

femoral heads ranged from 0-12 mm. Researchers have studied the effect of variation of 

femoral head size in relation to wear of the liner.  One such study concluded that femoral 

head size does influence wear. (Murtalog 2001)  Normal polyethylene wear time can vary 

for different UHMWPE processing techniques.  It has been reported that the wear rate for 

marathon liners is approximately 0.08-0.24 mm/year while Enduron liners is 0.18-0.2 

mm/year.  Both liner types had been sterilized with gas plasma; however the Marathon 

liners were irradiated at five Mrad to diminish all free radicals and the Enduron liners 
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were not (Hopper 2003).  The polyethylene liners in the current study included Marathon, 

Enduron, Hylamer, and PFC.  An overall typical estimated average of wear in MOP THA 

implants is approximately 0.05-0.1 mm/year depending on subject activity and 

polyethylene processing quality (Walker 2002). 

 In order to ensure quality performance of the requested gait activity, all subjects 

were required to be active and have a Harris Hip Score (HHS) greater than 90.  The 

Harris Hip Score is a rating of how active the subject is with their daily activities, such as 

tying a shoe, bending down, sitting in a chair, etc (Stryker 2005).  A score of greater than 

90 corresponds to a subject who is able to do 90% of their daily activities with little to no 

difficulty.  The subjects in this study consisted of eleven males and nine females having 

an average age of 64 years (range of 44-79).  The following methods were used to 

analyze the twenty subjects for wear, separation, and gait kinematics. 

2.2 Fluoroscopy  

 All subjects performed treadmill gait while under fluoroscopic surveillance using 

a VF-2000 fluoroscope (Radiographic and Data Solutions, Inc., Minneapolis, MN) 

operated by a certified radiation technician, allowing for the documentation of the 

relative motion between the femoral and acetabular components under in vivo conditions. 

The use of fluoroscopy allows for the formation of a basic projection image, captured by 

passing pulsated radiation through the subject’s joint and onto an image intensifier 

(usually a ten to twelve inch diameter circle).  The amount of radiation emitted from  
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Figure 5:  (Left) Fluoroscopy Machine with Treadmill and Subject (Right) Top 
View of Fluoroscopy Machine, Image of Radiation Source to Image Intensifier 

 

pulsated fluoroscopy, measured at the maximum setting was 2.4 rad/min (3.6 Rem), 

which is much less than steady stream x-ray having a continuous stream of radiation.  

The image intensifier passed the image onto a mirrored system into a camera which 

recorded the dynamic movements (Figure 5).   

The metal femoral stem and acetabular shell containing the polyethylene liner 

appeared as a blackened silhouette on the video screen (Figure 6).  Bone and tissue were 

viewed surrounding the THA implant as lighter gray areas due to better passivity of the 

radiation.  The fluoroscopic video was captured at 30 frames per-second in order to gain 

the best quality images.  The speed of the treadmill was monitored such that it was at a 

rate that would allow the images to be captured without occurrence of blurring or 

ghosting.  The fluoroscopic video was recorded onto a digital video (DV) recording  
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Figure 6:  Picture on Picture View of Fluoroscopy Image with Real Time Image 
 

system. The real-time video of the subject’s stride was also captured using a video home 

system (VHS) camcorder.  Both the fluoroscopic video and real-time video were 

collaborated onto one screen using a picture-on-picture box (Figure 6).  This created a 

screen view of the subjects gait cycle in vivo and ex-vivo, allowing use of a visual aid in 

determining what instance of the gait cycle was being captured.  Specified frames from 

the fluoroscopic gait videos for each subject were captured and edited using the software 

package Adobe Premiere ProTM.  Images were taken at heel-strike, 33% of stance phase, 

66% of stance phase, toe-off, and at six increments of swing phase for each subject.  Gait 

phases were determined using the picture-on-picture image of the real-time subject gait 

cycle.  For example, when the real-time video of the activity showed the subject in heel-

strike, the adjoining fluoro-video frame was captured.  Values of 33% and 66% of stance 
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phase were found by calculating the number of frames between heel-strike and toe-off.  

This value was then divided by three and added in succession from the first heel-strike 

value.  Swing phases were found by using the time between the toe-off and the next heel-

strike in gait.  This time was divided by six and added in succession from toe-off to find 

all six swing phases.  The settings for capturing images from the DV video were 640 X 

480 frame size at 0.1 pixel ratio, and images were saved in tiff format to ensure the best 

possible resolution properties.   

Images captured from the fluoroscopy were initially geometrically distorted by an 

effect called pin cushioning, created by the distance between the x-ray source and the 

image intensifier.  This effect caused the pixels of the images to concave inwards leading 

to the images to appear to be warped.  To unwarp the images, a calibration method was 

performed using a fluoroscopic image of a bead board.  The bead board consisted of a 

clear plexi-glass plate with metal beads inserted at a known distance apart from each 

other in grid format (Figure 7).  The letter “B” was also placed on the board to observe 

whether the fluoroscopy unit inverted the images.  The bead board fluoroscopic image 

was used to estimate the geometrical distortion by an algorithm in MatlabTM.  The Matlab 

code estimated each 2-D spatial transform of the four bead bounded blocks throughout 

the board and applied a local bilinear mapping model and gray level interpolation method 

to remove the distortion (Mahfouz 2003).  Overall the Matlab process found the digital 

pixel locations of the beads in the board (state space), compared  
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Figure 7:  (Left) Original Fluoroscopy Image of a Warped Calibration Bead Board 
(Right) Un-warped Fluoroscopy Image of the Calibration Bead Board 

 

it with the known bead distances, and then created a transform function to calibrate all of 

the fluoroscopy images from state space back to the true bead board geometries.  This 

process was used to unwarp all images taken by the particular fluoroscopy machine.   

2.3 2-D to 3-D Registration Analysis  

Using CAD drawing software, 3-D models of the femoral stem and acetabular 

shell THA implants were drawn based on model drafts provided by the company. The 

CAD models and 2-D gait images were then analyzed for wear and kinematics using a 2-

D to 3-D registration method.  Metal implants were viewed as darkened silhouettes in the 

fluoroscopic images because of the lack of radiation transmission through the metallic 

materials.  Polyethylene absorbs radiation and was transparent in the fluoroscopic 

images; therefore, the metal shell encasing the polyethylene liner was used for 

referencing.  The darkened implant silhouettes on the 2-D fluoroscopic images were used  
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Figure 8:  3-D CAD Model Matching Projected Fluoroscopy Image Silhouette 
 

as a base location for predicting the location of the 3-D implant models in-vivo (Figure 

8). The registration method used for this study contained a combination of a matching 

algorithm, optimization technique, and supervisory control to create the analysis 

(Mahfouz 2003).  The matching algorithm compared a predicted image formed from the 

3-D CAD drawing using SGITM and Open InventorTM to the actual fluoroscopic image.  

The two images are evaluated by a combination of their pixel values (intensity matching  

score) and edge detection (contour matching score) determined by: 

Intensity Matching Score:  =
∑ ∑

),( ),(
),(/),(),(

yx yx
yxHyxHyxG

, 
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where   G(x, y) = input x-ray image 

    H(x, y) = predicted x-ray image 

Contour Matching Score:  =
∑∑

),(),(

),(/),(),(
yxyx

yxKyxKyxJ
, 

where  J(x, y) = the input edge-enhanced image 

    K(x, y) = the predicted edge image 

Both scores are highest when their pixel values or counter values match the 

silhouette with the CAD model.  Combining the scores and finding the minimum value 

allows the algorithm to know what location is the best possible match.  With semi-

symmetrical implants such as knees, the combination of scores can create two local 

minimums.  Out of the two scores only one can be possible and therefore the true 

minimum value must be found.  To do this, an optimization algorithm is run using seven 

possible location points starting from the worst possible case and iterating until the best 

scenario is found.  The final step is the supervisory controls which allow the user to 

define their ideal input on where the model should be located. During THA analysis the 

supervisory controls are used a majority of the time.  Unfortunately, due to the density of 

the muscle and fat tissue around the hip joint, running the matching and optimization 

techniques did not always work.  The cylindrical symmetry of the acetabular shell models 

also caused a problem with the algorithm causing it to run continuously and never find 

the perfect match to the silhouette.  The stem and acetabular shell models were most 

often manually fit by the user alone.   



www.manaraa.com

Materials and Methods 
 

 
- 22 - 

Threshold analysis of the 2-D to 3-D registration system has shown translational 

error to be approximately 0.1 mm (with exception of the Z-direction) and rotational error 

to be 0.4 degrees under ideal conditions.  Experiments have been performed by Mahfouz 

et al. to determine this threshold by comparison of values taken from three different 

setups.  One setup included manually placing the implants in known positions in front of 

the fluoroscopy machine, taking the image, overlaying the image, and comparing the 

numbers.  Another setup involved implanted cadaver legs which were monitored by an 

Optotrack system as well as the fluoroscopy machine.  The final test used real human 

subjects.  Studies using Mahfouz’s 2-D to 3-D registration analysis thus far have used a 

threshold of 0.75 mm for error elimination purposes.   A threshold analysis was done for 

the images used in the current study by a simple linear measurement calibration done 

using Sigma ScanTM.  Captured fluoroscopic images were imported into Sigma Scan 

which allowed linear measurements to be taken of the diameter of the femoral head in 

pixel values (Figure 9). The known diameter of the femoral head was then used along 

with the pixel measurements to find the millimeter/pixel values of the images.  Dynamic 

images were found to have a value of 0.55 mm/pixel and were therefore chosen as the 

threshold for the gait cycle captured images.  Since movement of the subject can cause 

slight blurring of the contours, it was decided that the threshold for the wear analysis 

could be as small as 0.25 mm.  This kept the dynamic images within one standard 
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Figure 9:  Sigma Scan Measurement of Femoral Head Diameter 
 

deviation away from the standstill images and still well above the predicted threshold of 

the system at 0.1 mm for a safety factor. 

2.3.1 Wear Analysis  

Weight-bearing stationary images were evaluated using the above 2-D to 3-D 

registration algorithm to determine a predicted measure of polyethylene wear of the shell 

liner.  Each acetabular shell component consisted of a polyethylene liner with a metal 

shell backing.  As mentioned earlier, since the polyethylene component was not visible in 

the fluoroscopic images, the metal acetabular shell was used as a measuring reference.  

The liner measured thickness between the metal femoral head to the metal acetabular 

shell was first obtained (Figure 10).  The measured thickness was then subtracted from  
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Figure 10:  Wear Measurement from Proximal Femoral Head to 0uter Proximal 
Edge of Acetabular Shell 

 

the known thickness of the implanted polyethylene liner and metal shell combined, to 

determine the amount polyethylene wear.  A threshold of 0.25 mm was used for the 

current analysis of wear.  This meant that any values greater than or equal to 0.25 mm 

were determined as having wear in this study.    

2.3.2 Separation Analysis 

Separation analysis was performed in a similar procedure to wear analysis.  The 

registration algorithm allowed the user to overlay the 3-D models onto the 2-D 

fluoroscopic gait cycle images captured from the fluoroscopic videos (Figure 11).  The 

overlay method created an image analysis of the implants over the entire dynamic gait 

cycle.  Using the 2-D to 3-D registration algorithm, linear separation measurements were 

calculated from the most proximal point of the femoral head to the proximal acetabular 
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Figure 11:  Full Sequence of Analyzed Images in the 2-D to 3-D Registration System 
with 3-D Models Overlaid 

 

shell edge during each frame captured (Figure 12).The 2-D to 3-D registration software 

also recorded the models positions throughout the gait cycle.  All models were centered 

before input at the origin (0, 0, 0) in the program reference frame.  As the models were 

manipulated individually, the rotations and translations from the original position were 

recorded for the program’s set X, Y, and Z reference frame (Figure 13).  The kinematic 

equations were used in the mathematical model described later. A threshold was chosen 

for the dynamic analysis at one standard deviation away from the wear analysis to 

compensate for possible blurring of the implant silhouettes created during the gait 

motion, at 0.55 mm. 

2.4 Theoretical Modeling  

A basic 3-D mathematical model using Kane’s method of dynamics was created 

to model hip joint mechanics in vivo.  A 3-D model for the current study includes only  
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Figure 12:  Separation Measurement Analysis from Proximal End of Femoral Head 
to Proximal End of the Acetabular Shell 

 

 

Figure 13:  Translation and Rotation Recordings in the 2-D to 3-D Registration 
Algorithm 
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two rigid bodies: the femur (Body A) and the pelvis (Body B) with six degrees of 

freedom three for each body.  A Newtonian reference frame, N, was set, as well as 

sequential massless (intermediate) frames for each body, A and B (Figure 14).   

2.4.1 Modeling Assumptions 

The following assumptions were made for this model.  Muscles and ligaments 

were not included in the model for simplification reasons and were viewed as being 

inclusive factors of the forces and torques solved for between the femur and acetabulum. 

The motion of the femur with the respect to the pelvis was viewed in three rotations: 

flexion/extension, internal/external, and abduction/adduction.  The motion of the pelvis 

with respect to the femur was only replicated in flexion and extension due to the lack of 

  

 

Figure 14:  3-D Free Body Diagram of the Hip Joint for Theoretical Modeling 
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Figure 15:  Force Plate Data Gathered and Doubled for Code Input 
 
movement of the pelvis in abduction/adduction and internal/external rotation during gait.  

Only principle moments of inertia were included for each of the rigid bodies.  All other 

inertia values were assumed insignificant due to the complexity of the system.  Forces 

were input into the model at the distal end of the femur from force plate data collected 

from a gait activity of one subject in this study. During the activity, a volunteer walked 

across the force plate in normal stride making sure to get the entire stance phase of gait 

from one foot on the force plate (Figure 15).  Using the results from our previous 

mathematical models of the knee joint and the results from a telemetric knee we decided 

to input a temporal forcing function at the femorotibial articulation having a maximum 

force of 2.0 times body weight (D’Lima 2005, Komistek 1998).  Therefore, the function 

at the femorotibial joint represented a forcing function that was 2.0 times the forcing 
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function derived between the foot and the force-plate.   Using this assumption, we 

normalized the force-plate data for each subject using their body-weight and their stride 

distance.  No other forces were used as inputs and the hip joint was assumed frictionless.   

2.4.2 Kane and Levinson’s Method 

As stated previously, we chose Kane’s method of dynamics to formulate the 

system equations of motion.  Based off of Newton’s theory, the basic equation for Kane’s 

method is: 

Fr + Fr
* = 0  r = 1,…..,n 

The above equation defines the sum of generalized active (Fr) and inertial forces for each 

generalized speed equal to zero (Fr
*): 

“Kane’s equation” may look more familiar in the form: 

  F – ma = 0 

This is an alteration of Newton’s law of motion: 

  F = kma = k•  (mv) 

where    mv = linear momentum,  

F = applied force, and k = a unit dependent constant 

Generalized active forces (Fr) are a combination of the constrained and 

unconstrained generalized active forces in the dynamic problem defined with partial 

velocities and partial angular accelerations. 

Fr = ∑
=

N

u 1

[  AVS
Ur •   FS + AωS

Ur •   TS ] , 
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Generalized inertial forces (Fr
*) are a combination of the constrained and 

unconstrained generalized inertial forces of the dynamic problem. 

Fr *=  ∑
=

N

u 1
[ AVS

Ur •  FS* + AωS
Ur •   TS*] 

where   r  = the rth degree of freedom 

n  = the total number of degrees of freedom (in this case 3 

per body) 

  N  = the number of rigid bodies in the system (in this case2)  

  Ur  = the rth generalized coordinate 

S  = the body being referenced 

A  = the coordinate of the fixed reference frame 

AVS
Ur = the partial velocity or partial derivative of the of change 

in distance between the position and mass center 

velocity vector in the rigid body in question 

AωS
Ur  = the partial angular acceleration or the derivative of the 

orientation of the angular velocity vector on the rigid body 

in question 

FS  = the resultant force acting on the body in question 

TS = the resultant torque acting on the body in question 

FS* = the resultant inertia force on the body in question 

TS* = the resultant inertia torque on the body in question  
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Partial velocities and partial angular accelerations were expressed as: 

AVS
Ur  = 

r

SA

U
V

∂
∂  , 

where,   AVS = the velocity vector of the mass center of rigid body S 

relative to the origin of the fixed referenced axes  

AωS
Ur  = 

r

SA

U∂
∂ ω  

where,  AωS =  the angular velocity vector of the rigid body S 

The resultant inertia force (FS*) and torques (TS*) are defined by: 

  FS = -MS  •  AS , 

TS* = -( I S • AωS) x  AωS - I S • AαS , 

where,  Ms = the mass of rigid body S 

As = the acceleration vector of the mass center of the Sth rigid body 

relative to the origin of the fixed referenced axis 

AαS  = the angular acceleration vector of the Sth rigid body 

I S  = the inertia dyadic of the Sth rigid body (Komistek 1992) 

Six degrees of freedom were defined for each body, creating twelve total degrees 

of freedom in the system, and twelve generalized speeds were created and constrained.  

As mentioned earlier intermediate frames, or better known as generalized coordinates 

were defined for each body.  Generalized coordinates (qr, r = ,…,n) act as time varying 

rotations and translations defining all point and rigid body orientations.  Generalized 
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speeds (Ur) then can be set to simplify calculations the time varying functions of the 

generalized coordinates. 

Ur =  ][
1

rs

r

s
rs ZqY +∑

=

 

where,  ‘Yrs’ and 'Zr’ are functions of the generalized coordinates and time (Sharma 

2005).   

Generalized speeds were introduced into the angular acceleration and six into the 

velocity equations. 

AωN  = U1 Iu+ U2Ku + U3Ju  , 

BωA = U4 Iu+ U5
 Ku + U6Ju  , 

BωN = U1 Iu+ U2Ku + U3Ju  + U4 Iu+ U5
 Ku + U6Ju   

where,  A = the generalized coordinate of the rigid body of the femur 

  B = the generalized coordinate of the rigid body of the pelvis 

  N = the Newtonian or fixed reference frame 

The remaining six generalized speeds were placed into the velocity equations in a similar 

fashion using points defined on the rigid bodies.  Velocities were defined from the distal 

end of each rigid body.   

2.4.3 Dynamics 

Equations of motion were formed from rotational and translational data of the 

femur with respect to the pelvis, collected from the kinematics found in the fluoroscopic 

analysis.  As mentioned in the assumption, rotations were modeled to describe the 
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movement of the pelvis with respect to the femur.  Rotational sequences were described 

in the order of greatest amount of rotation to the least amount of rotation:  

The direction of cosine matrices created for the leg kinematics are: 

For the femur: 

1. Flexion/Extension 

= 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −

100
0)3cos()3sin(
0)3sin()3cos(

qq
qq

 

2. Abduction/Adduction 

= 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−

)1cos()1sin(0
)1sin()1cos(0

001

qq
qq  

3. Internal/External   

= 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

− )2cos(0)2sin(
010

)2sin(0)2cos(

qq

qq
 

From the individual frame rotations the full transformation of body A with respect to the 

Newtonian reference frame was determined.  

For the pelvis 

1. Flexion/Extension 
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= 
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⎟
⎟

⎠

⎞

⎜
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⎜

⎝

⎛
−−
−−−

100
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The current model has some unique features.  First, the input data in this model is 

derived using in vivo methodologies that allows for subject specific data to be used.  

Secondly, the model is parametric in natured allowing for unique conditions to be 

modeled for each subject, including the occurrence of femoral head separation (femoral 

head sliding in the acetabular cup) from the acetabular liner  Finally, this model was 

derived as a system of equations, rather than using traditional mechanics approaches that 

models each rigid body separately.   Translation vectors between defined points on 

respective rigid bodies (example:  from the center of the femur to the center of the pelvis, 

point ao to point bo on the free body diagram) where were derived under in vivo 

conditions and then temporal functions were derived by curve-fitting the data points with 

respect to time.  Constant vectors of lengths were defined for the femur and the pelvis. 

Lengths of the bodies were defined: 

  PF  = PF1I + PF2J + PF3K  (distal femur to femur center of mass) 

  PD  = PD1I + PD2J + PD3K   (distal femur to proximal femur) 

  PP  = PP1I + PP2J + PP3K     (distal pelvis to pelvic center of mass) 

  PE  = PE1I + PE2J + PE3K   (distal pelvis to pelvic-lumbar boundary) 

Position vectors for the pelvis were completed in the same fashion as those for the 

femur but with respect to the defined “B” reference frame.  The bodies were now  
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Table 1:  Measurements Used for Anthropometry Data 
 

 

GENDER 

 

PELVIS 

 

CENTER OF MASS

 

THIGH 

 

CENTER OF MASS

Male 251.7 mm 106 mm 520.2 mm 236.6 mm 

Female 256.8 mm 128.4 mm 496.2 mm 248.1 mm 

 

registered in the Newtonian reference frame in their respective orientations.  A note must 

be made that anthropometric data was not taken at the time of fluoroscopy.  Estimation of 

subject lower limb data for an average male and average female was used from Leva’s 

paper (Leva 1995).  The values used for the specific anthropometric inputs of this study 

are above in Table 1. 

Using the position vectors, velocities, and angular velocities described above 

along with twelve equations of motion input from the kinematic data, generalized forces 

and generalized inertias were derived.  In a solvable system the number of unknowns 

equals the number of knowns.   

Since twelve equations of motions were placed into the mathematical model, 

twelve outputs could be derived.  The outputs chosen for this model were: 

FHIPI>,FHIPJ>,FHIPK> = forces between the proximal femur and 

acetabulum of the pelvis 
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THIPI>,THIPJ>,THIPK> = Torque between the proximal femur and 

acetabulum of the pelvis 

FPLI>,FPLJ>,FPLK> = Force between the pelvis and lower 

lumbar 

TPLI>,TPLJ>,TPLK> = Torque at between the pelvis and lower 

lumbar 

Resultant forces and torques could also be solved for with simple addition: 

FHIP> = FHIPI> + FHIPJ> + FHIPK> , 

THIP> = THIPI> + THIPJ> + THIPK> , 

FPL>  =  FPLI> + FPLJ> + FPLK>  , 

TPL>  =  TPLI> + TPLJ> + TPLK>   
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3.1 2-D to 3-D Registration Analysis 

Forty percent of the subjects had wear rates above the threshold value of 0.25 

mm.  Wear was determined overall insignificant in the group.   Wear values ranged from 

0 to 2.9 mm and all data gathered was initially compared with post-operative times to 

determine if there was a correlation (Figure 16).  The appearance of negative wear rates 

in some subjects (forty-percent of the subjects) was actually the occurrence of , femoral 

head separation, which will be discussed in a later section.  Also, there was not a 

statistical correlation between wear and post-operative time.  The insignificance of post-

operative time to wear was a surprise, however it could be due to the fact that forty-

percent of the subjects had negative wear values, which made wear in those subjects 

indistinguishable from separation. 

Another surprising finding was that the subject experiencing the maximum 

amount of wear was just over three year’s post-operative.  A graph of the subjects wear 

values along with separation values throughout the gait cycle is also shown below (Figure 

17).  A comparison of one of the subjects with no wear or separation is also provided 
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Figure 16:  Wear vs. Post-operative Analysis for All Twenty Subjects 
 

(Figure 17).  In further analysis of the subject surveys it was noted that this particular 

subject had confessed to being a champion tennis player at his local country club before 

his total hip arthroplasty and was unable to give up the habit.  The surgeon was advised 

of the subjects high wear values and agreed to monitor the subject’s THA implant more 

closely at the follow-up visits.  As mentioned earlier, “negative” wear values were found 

in twenty-five percent of the subjects.  These subjects were also determined to have 

separation values, thus leading to the conclusion that femoral edge loading must be 

occurring.  Femoral edge loading occurred when the subject’s wear was centralized on 

the edge of the acetabular shell.  The edge wear allowed the femoral head to slide to the 

lateral edge of the shell at all times, even during weight bearing stand still (Figure 18).   
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Wear: Patient 14
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Figure 17:   (Top) Excessive Wear Subject, (Bottom) A Subject with No Wear and 
No Separation Subject 
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Figure 18:  Implant Overlays of Subject with Femoral Edge Loading (Left) Top 
View, (Right) Back View 

 

This caused excessive sliding distance values in comparison to the subject liner thickness 

values (Figure 19). 

During the gait phase evaluations, twelve subjects experienced femoral head separation 

from the acetabular shell. These values were then compared with post-operative times.  

The incidence of separation was deemed to be statistically significant for this study. 

However the correlation of post-operative times with separation was found to be 

insignificant once again.  The threshold for femoral head separation during gait was 0.56 

mm.  The maximum value of separation found was approximately 3.5 mm (Figure 20).  A 

comparison of the maximum separating subject with a non-wear, non-separating subject 

can be seen in Figure 21.  The subject with the maximum femoral head separation subject  
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Figure 19:  Subject with Negative Wear Values throughout Gait Cycle Predicting 
Femoral Edge Loading 
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Figure 20:  Separation vs. Post-operative Times for All Twenty Subjects 
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Maximum Separation: Patient 16
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Figure 21:  (Top) Femoral Edge Loading (Bottom) A Subject Experiencing No 
Wear, and No Separation 
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was also determined to have approximately 0.4 mm of wear. 

Separation was found to occur most often around 66% of the gait cycle, either 

from the transition of 33%-66% gait or from 66%-gait to toe-off (approximately 50% of 

separators).  Twenty-five percent of separators experienced separation during swing 

phase and the other twenty-five percent exhibited signs of never being fully seated in 

their acetabular shell as mentioned earlier.  Ten percent of the group demonstrated both 

separation and wear (Figure 22).   

3.2 Kinematic and Kinetic Analysis  

Initial kinetic analysis was performed on two subjects: one subject, a male, with 

0.63 mm of separation and no wear (subject A), and one subject, a female, experiencing 

0.56 mm wear but no separation (subject B).  Rotation and translation data was 

transformed into simple polymertric equations (Figure 23 & 24).  There were definite 

differences between the kinematics experienced by the two subjects.  Subject A had a 

stride time of 2.06 seconds with stance phase (toe-off) ending at 1.46 seconds.  Subject B 

had a shorter full stride time of 2.03 seconds, but a longer stance phase (toe-off) ending at 

1.83 seconds into the stride.  Rotations of subject A are much larger in range than subject 

B which may be due to the longer stride time.  Subject A also had a negative range of 

translations whereas subject B’s translations are all mostly positive.  Predicted force 

profiles of subjects A and B were similar in shape and magnitude with variations only 

appearing in the time differences that each subject took to perform one stance-phase 
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Figure 22:  Graph of Separation and Wear 
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Figure 23:  Rotations of Subjects (Top) Subject A and (Bottom) Subject B 
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Figure 24:  Translations of Subjects (Top) Subject A and (Bottom) Subject B 
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of gait (Figure 25 & 26).  The maximum vertical force at the hip joint for subject B was 

found to be approximately 1.75 times body weight, occurring at 66% of the gait cycle.  

The vertical hip joint force for subject A was slightly higher at approximately 1.9 times 

body weight, also occurring near 66% of the gait cycle (Figure 27).    Boundary forces 

between the vertebral body L5 and the pelvis produced a similar trend with 1.8 times 

body weight for subject A and 1.75 times body weight for subject B (Figure 28-30).  

Torques at the hip joint and back were also higher in subject A in the horizontal (N1>) 

direction (Figure 31-34). 
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Figure 25: Hip Joint Forces for the Separating Subject 
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Figure 26:  Hip Joint Forces for the Wear Subject 
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Figure 27:  Resultant Forces for Subject A and B at the Hip Joint 
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Figure 28:  L5-Pelvic Boundary Forces for Subject A 
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Figure 29:   L5-Pelvic Boundary Forces for Subject B 
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Figure 30:  Resultant Forces for L5-Pelvic Boundary Forces of Both Subjects 
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Figure 31:  Torques at the Hip Joint for the Subject A 
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Figure 32:  Torques at the Hip Joint for Subject B 
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Torques at the L5-Pelvic Boundary for Patient A
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Figure 33:  Torques at the L5-Pelvic Boundary for Subject A 
 

Torques at the L5-Pelvic boundary for Patient B

-20

0

20

40

60

80

100

120

0.0 0.5 1.0 1.5 2.0 2.5

Time (s)

To
rq

ue
  (

N
m

)

T_BN_1 T_BN_2 T_BN_3

 

Figure 34:  Torques at the L5-PelvicBboundary for Subject B 
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4.1 Discussion  

A summary of the 2-D to 3-D analysis can be studied in Figure 35.  Statistical 

correlations were made separately using one-sample t-test for wear and for separation, as 

well as a Spearman’s rho correlations test between wear, separation, and post-operative 

times (Table 2).  Using the one-sample t-test with a 95% confidence interval for 

separation, values in the study were found to be significant with a p-value of 0.001.  Data 

correlation using the Spearman’s rho test between separation, wear, and post-operative 

time indicated a very strong negative correlation between wear and separation.  

Correlations between post-operative times and separation were found to be slightly 

negative, but over all insignificant.  Correlations between post-operative times and wear 

are positive, but also insignificant.   

The most interesting and unexpected finding with the statistical analysis was that 

correlation between separation and wear was determined to be a negative correlation 

(Table 2).  This informed us that separation was not necessarily causing wear in this 

subject group.  The original hypothesis to this study was that greater separation between 
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Figure 35:  Chart of 2-D to 3-D Analysis Outcome 
 

Table 2:  Data Correlations Found by Spearman’s Rho Test 
 

Correlations     Separation Wear 

Post-
Operative 

Time 

Spearman's Rho Separation 
Correlation 
Coefficent 1.000 -0.499* -0.156 

    
Sig. (2-
tailed)   0.025 0.512 

    N 20 20 20 
            

  Wear 
Correlation 
Coefficent 0.499* 1.000 0.047 

    
Sig. (2-
tailed) 0.025   0.843 

    N 20 20 20 
            

  

Post-
Operative 

Time 
Correlation 
Coefficent -0.156 0.047 1.000 

    
Sig. (2-
tailed) 0.512 0.843   

    N 20 20 20 
* Correlation is significant at the 0.05 level (2-tailed). 
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the femoral head and acetabular components would cause more of an impact force on the 

acetabular liner, and alter natural movement, therefore causing more wear.  An 

explanation for negative correlation between separation and wear may be that that the 

subjects not experiencing femoral head separation were implanted more tightly leading to 

increased bearing surface forces that may have lead to increased wear.  Wear can also be 

caused by a variety of factors including subject activity and polyethylene pre and post-

processing.  A study comparison on subject activity and processing of the different liner 

types might be useful in determining causes of wear in the current study. 

 Using the kinetic solutions between a subject with separation values and one with 

wear values, higher forces were seen in the subject with separation.  This matches the 

original hypothesis in that the phenomenon of separation causes an impact loading force 

and therefore increasing the forces between the femoral head and acetabulum.  A new 

formulated theory then may be that the tighter implantation of the THA may lead to 

increased wear of the polyethylene insert caused by the higher contact forces.  It is also 

possible however, that separation may be allowing synovial fluid to enter between the 

femoral head and acetabular shell therefore allowing a protective layer to form over the 

polyethylene reducing wear.  Further long term follow-up studies may need to be 

performed with a group of subjects from directly post operative through wear and implant 

failure to determine if wear could be a determinate factor for separation. And of course 

for an overall better view of the current project’s kinetic comparison, more subjects 
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would need to be analyzed for kinematics and kinetics as well as more images analyzed 

during the gait cycle for increased exactness in equation modeling. 

Another interesting observance was the higher torque values predicted in this 

study, which may be directly related to the simplicity of this model.  In the human body, 

the muscle forces influence motion in the human body, including the rotations that occur 

between to subsequent bones.  In the human body, muscles can also restrict the motion 

leading to a more natural motion that may have moments, but not necessarily a torque.  

Without those muscles and other soft-tissue constraints we essentially are modeling a 

motor at each joint to product the rotations.  Without resistive structures, the torques 

required to produce the motions normally activated by the muscles, may be higher than 

one would expect.  In the future modeling for this project, we will add in soft-tissue 

structures, which may reduce the applied torques in this system. 
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5.1  Conclusion and Future Considerations 

Separation was determined to occur significantly in subjects with MOP THA 

implants.  However, why it occurred and what problems it may have caused to the 

individuals are still unknown. The current study has shown that wear and separation are 

negatively correlated.  It has also shown that higher forces occurred for a subject with 

separation compared to a subject without separation.  However, the current theoretical 

modeling method only considers the bodies of the femur and the pelvis with no muscle 

forces included.  A literature search, using Gray’s Anatomy text and an interactive 

anatomy software, Primal StudiosTM, was performed during the early stages of the 

current project to find muscles at the hip joint active during gait.  The muscles and 

ligaments were then divided into six groups as tabulated in Table 3.  Force profiles of the 

chosen muscles would need to be determined through cadaver testing, literature, or 

through the use of imaging techniques of live subjects.   

Loci tracking involves computer placement of points on the femoral head and 

tracks their location during the analysis.  This tracking creates a graphical path of the  
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Table 3:  Table of Muscles used During Gait and Their Groupings Due to Their 
Actions 

 
Rotation Muscles 

Lateral Rotation Gamellus (superior/inferior), 

Obturator (External/Internal), 

Piriformis, Quadratus Femoris, 

Gluteus Maximus/Medius 

Medial Rotation Gluteus Minimus, Tensor Fascia 

Lata 

Flexion Gracilis, Sartorius, Tensor Fascia 

Lata, Illiopsoas 

Extension Biceps Femoris, Rectus Femoris 

Abduction Gluteus Minimus/Medius 

Adduction Adductor Longus/Magnus/Brevis, 

Gracilis 
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specified points during the movement which may or may not increase the current models 

sensitivity. (Mahfouz 2003, Turell 2003)    

Researchers have also previously suggested that the (American Academy of 

Orthopedic Surgeons 2005), the position of the acetabular shell component be defined 

more accurately and used as input to the parametric model.  Multiple studies have been 

done on the effect of the shell placement and the kinematics of the THA implanted hip.  It 

has been found in these studies that dislocation and wear may occur more often with 

some combinations of acetabulum shell orientation angles.(Widmer 2003, Bourne 2004, 

Pietrabissa 1998)  Surgeons are interested to know if, with this current study, the shell 

placement might also have a role in separation and/or increased forces at the hip joint.  

Additions to the current study are a continuously growing list.  In the current study 

separation was found to occur significantly in MOP subjects and have a negative 

correlation with wear.  The kinetic analysis of the separation subject also produced higher 

forces at the hip joint showing signs of possible impulse loading.  However, the answer to 

the questions of why separation occurs and to what effect it has on the THA implant and 

kinematics of the subject are still undetermined.  Future studies will involve advancement 

of the present model to incorporate more clinical information and the implementation of 

soft-tissue  
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